Language Definitions and Notations

See Section 1.5

Here are a bunch of basic definitions that we will use all semester. There is nothing exciting here but you won't be able to follow much until you get these in your head.
Σ is a finite set of symbols called our alphabet. This could be the set $\{0,1\}$ of binary digits, or the set of lower-case letters 'a' to 'z'. Don't let the term "alphabet" confuse you. Σ could also be the set of valid Java keywords and identifiers up to length 64 (so it is finite). Any finite set of atomic elements will do.

A string or word over Σ is any finite sequence of elements of Σ.
ε represents the empty string: the string of length 0
Σ^{n} is the set of strings over Σ of length n (exactly n).
Σ^{*} is the set of all strings over Σ, including the empty string.
Σ^{+}is the set of all strings with positive length over Σ.
Obviously, $\Sigma^{*}=\Sigma^{+} \cup\{\varepsilon\}$
A language over Σ is any subset of Σ^{*}.

Question 1: How big is Σ^{*} ?

Well, if Σ is the empty set then Σ^{*} is $\{\varepsilon\}$. If Σ is not empty then Σ^{*} is countable -- it is a countable union of finite sets.

Question 2: How many languages are there over Σ ?
If Σ is empty there are two, both trivial: $\}$ and $\{\varepsilon\}$.
If Σ is not empty there are uncountably many languages over it (for if you could number the subsets of Σ^{*} you could create a new subset that wasn't in any of them.

